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Figure 1: A static scene in the real world can be rapidly captured in 3D into a NeRF, in this example using a hand-heldMicrosoft
Azure Kinect color & depth camera. A realtime SLAM implementation estimates camera poses, while instant training and
rendering of the NeRF provides live feedback to guide the capture of areas that have not yet been covered. The whole process
takes less than one minute.

ABSTRACT
We extend our instant NeRF implementation [Müller et al. 2022]
to allow training from an incremental stream of images and cam-
era poses, provided by a realtime Simultaneous Localization And
Mapping (SLAM) system. Camera poses are refined end-to-end by
back-propagating the gradients from NeRF training. Reconstruction
quality is further improved by compensating for various camera
properties, such as rolling shutter, non-linear lens distortion, and
variable exposure typical of digital cameras.

Static scenes can be scanned, the NeRF model trained, and the
reconstruction verified in an interactive fashion, in under a minute.
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1 INTRODUCTION
Photogrammetry allows real-world scenes to be reconstructed in 3D.
Prior works which output surface representations [Izadi et al. 2011]
struggle with the view-dependent appearance of real materials, and
smooth out volumetric details such as hair or fur. These limitations
have largely been overcome by neural radiance and density fields
(NeRF) [Mildenhall et al. 2020], in which a small neural network
configured as a coordinate network is trained to predict the view-
dependent color and density at any point within a volume. Instant
NeRF [Müller et al. 2022] can train NeRFs in seconds, which we
extend to an end-to-end real-time 3D reconstruction pipeline.

2 METHOD
By implementing NeRF in terms of (i) optimized ray marching
routines, (ii) fully fused neural networks [Müller et al. 2021], and
(iii) a multiresolution hash encoding [Müller et al. 2022], we can
train it 1000× faster than prior work, leading to a high quality
reconstruction in a few seconds.

https://doi.org/10.1145/3532833.3538678
https://doi.org/10.1145/3532833.3538678
https://doi.org/10.1145/3532833.3538678


SIGGRAPH ’22 Real-Time Live! , August 07-11, 2022, Vancouver, BC, Canada Müller et al.

Figure 2: A rendering of the NeRF reconstruction of a 3D-printed bunny is shown on the left, and a number of slices through
the NeRF density volume is shown on the right. Notice in the cross sections that even the opposite side of the bunny is recon-
structed, despite that it was only visible through the front holes in the input.

Typically, a large number of images with associated camera
parameters are processed all at once. In contrast, NeRF can also be
trained incrementally, with new images being added to the training
set as they arrive from a hand-held camera.

2.1 Realtime visual odometry
Initial camera poses from color and depth data are estimated by
frame-to-model tracking, where the model is estimated using a
surfel-based SLAM method inspired by [Keller et al. 2013]. Depth
input improves the stability and performance of SLAM.

Other camera tracking, visual / inertial odometry or SLAM
pipelines that provide approximate camera extrinsics and intrinsics
could also be used.

2.2 Camera pose optimisation
As shown in Figure 1, the camera poses can be visualized during
capture. The gradients from NeRF training are used to refine these
poses end-to-end, similarly to [Lin et al. 2021]. Rather than repa-
rameterizing the camera rotations using matrix logarithms or screw
transforms, we follow an approach inspired by rigid body simula-
tion, and treat the loss gradients at each point as if they were forces
and torques acting on a mass centered at the camera. A variant
of the Adam [Kingma and Ba 2014] optimizer, specialised for rota-
tions, “nudges” the cameras into place, improving reconstruction
quality. A weak L2 regularization (factor 10−6) pulls the cameras
back towards the initial poses, improving stability.

2.3 Exposure optimisation
To compensate for auto-exposure of the camera given in some cap-
ture scenarios, which has a detrimental effect on the reconstruction,
we associate a trainable exposure compensation value 𝑒𝑖 ∈ R3 with
each training image, which scales the brightness of the 𝑖-th image
by exp(𝑒𝑖 ). Since 𝑒𝑖 ∈ R3, this also corrects small whitepoint shifts.

3 RESULTS AND DISCUSSION
Figure 2 shows a 3D-printed bunny reconstructed using our incre-
mental SLAM + NeRF pipeline, using data from a Microsoft Azure

Kinect camera. The shape of the latticework is faithfully recon-
structed, even in the partially occluded regions on the opposite side
of the bunny.

All results were computed using a single RTX 3090 GPU, render-
ing at 30–60 frames per second at a resolution of 640×360–960×540,
depending on scene, upsampled using NVIDIA DLSS to 1920×1080.
The training images were captured over a period of around 20
seconds, and the NeRF allowed to train for another 20–40 seconds.

We have shown that the combination of interactive NeRF train-
ing from an incrementally delivered stream of training images,
annotated with poses from a SLAM implementation, yields an end-
to-end system that permits high quality lightfield capture in less
than one minute.
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