

Fast, Approximate Piecewise-Planar Modeling Based on Sparse Structure-from-Motion and Superpixels

Hayko Riemenschneider, András Bódis-Szomorú, Luc Van Gool

Results

Problem Statement

Goal: fast, lightweight surface modeling of man-made scenes from images Input: Structure-from-Motion (SfM) data & source images

SfM point clouds typically too sparse for:

- reliable normal extraction (and clustering)
- direct planar region growing
- robust sequential fitting
- global robust multi-structure fitting
- capturing more than some major planes

Drawbacks of re-using images "sparsely":

- normals via photoconsistency imprecise
- vanishing directions not always possible

Problems with Dense Multi-View Stereo:

- enforcing photoconsistency (slow)
- difficulties with textureless areas (aggregation requires priors)
- often time-consuming, poor scalability
- Manhattan assumption (not always enough + prior orientations needed, see above)
- non-parametric, redundant sampling
- often needs post-processing,
 - e.g. segmentation, parametric fitting

Proposed Idea

Idea: SfM data & superpixels for multi-view surface reconstruction **Assumption**: piecewise-planar scene Inputs: SfM with visibility & source images

Outputs: 3D polygons, multi-view image segmentation

Contributions:

- combining SfM & superpixels for multi-view surface optimization
- novel joint multi-view MRF/energy formulation
- criterion for measuring plane stability
- dense 3D output as polygons

Multi-view Optimization

Input: superpixels, 3D points, cameras, visibility, plane hypotheses Task: assign all superpixels (from all views) to global plane hypotheses

set of superpixels (from all views) set of plane hypotheses

possible assignments of superpixel s_i to a plane $\mathcal{L} = \{l_1, l_2, \dots, l_S\}$ assignment of each superpixel in each view to a plane

Graph formulation $\mathcal{G} = \{\mathcal{V} \equiv \mathcal{S}, \mathcal{E}^b \cup \mathcal{E}^w\}$

- vertices are superpixels
- $ullet \mathcal{E}^w$ within-view edges between adjacent superpixels
- between-view edges generated by common SfM points

Optimization: α —expansion (graph cuts)

I. Unary terms
$$D_i(l_i) = D_i^{fit}(l_i) + D_i^{rays}(l_i) + D_i^{angle}(l_i)$$

- Fitting term: encourage planes that fit well to points seen in a superpixel

Free-space violations

II. Pairwise terms

a) Within views:

b) Between views:

- Color term: neighboring superpixels with similar color to the same plane
- Gradient term: weakly separated superpixels to the same plane

color

Weighting: neighbors sharing a shorter r. boundary affect each-other less

- Color term: encourage superpixels in different views with similar color to belong to the same plane
- Weighting: increases with the number of SfM points jointly observed

Initialization: Plane Hypotheses

Input: superpixels, 3D points, cameras, visibility

- I. Robust plane fitting to observed SfM points per superpixel (local)
- II. Plane filtering: stability measure via Monte-Carlo experiments

III. Global plane merging: greedy, merge if all inliers explained

Advantages of our method

dense & lightweight output

copes with textureless areas

no Manhattan assumption

detailed boundaries from images

fast: no pixelwise photoconsistency computations

highly parallelizable (superpixels, energy terms)

more than just principal planes captured

not required: sparse normals & clustering,

vanishing points, or dense depth maps

merging step very effective

minutes instead of hours

Input data				Superpixels / MRF			Planes			Timing*			
Dataset	imgs	pts	rays	sp	sp(data)	pts/sp	ini	filt	merge	gco	sp	3D	gco
Merton I	3	2.9k	6.7k	1.6k	60.0%	7.2	623	409	69	19	27 sec	10 sec	0.14 sec
Merton III	3	2.2k	5.0k	1.4k	47.9%	7.4	474	317	55	13	25 sec	7 sec	0.10 sec
HJ-P8	8	8.3k	25.4k	3.0k	76.6%	11.1	1883	1193	64	29	54 sec	29 sec	0.30 sec
Mirbel	26	19.5k	66.0k	16.9k	57.0%	6.9	6068	1426	292	185	4.4 min	2.9 min	10.6 sec
Pozzo	53	38.6k	135k	21.4k	50.5%	12.5	8152	5481	80	58	7.0 min	4.1 min	4.5 sec

*Timing: seconds in Matlab, intel Core i7 3.4 GHz CPU, on a single core