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Abstract – A far-range camera calibration method for 
vision sensors used in automatic lane detection 
systems is investigated. Autonomous vehicle guidance 
based on stereo image acquisition requires the 
knowledge of the camera parameters, such as camera 
position, orientation, lens distortion, focal length etc. 
with high precision. Calibration is performed by 
placing markers in known positions in front of the 
vehicle holding the camera(s) and by detecting the 
location of their images in the acquired snapshots. The 
parameters are then estimated by minimizing the 
geometric error in the image. Most of the methods 
discovered in the literature do not consider errors in 
the measurement of marker locations. However, a 
precise marker arrangement for far-range calibration 
might be expensive to set up. This paper shows that 
imprecision in the 3D location of the markers can not 
be tolerated in some practical situations and in such 
cases, a different optimization is proposed in the 
calibration of the extrinsic camera parameters 
(camera position and orientation). A position 
estimation method is also shown to extract marker 
positions from far-range laser distance meter 
measurements. The estimated marker positions are 
corrected by considering aiming errors, as well. 
Parameter errors are also estimated. It will be shown 
that our new calibration and optimization method is 
expected to result a good accuracy compared to 
commercial methods. 
 
Keywords – camera calibration, lane detection, stereo 
vision, autonomous vehicle guidance. 

I. INTRODUCTION  

Automatic lane detection plays an important role in 
the autonomous lateral control of on-road vehicles. The 
objective of such systems is to increase safety by 
determining the exact position of the vehicle within the 
actual lane, detecting lane curvature, predicting vehicle 
trajectory and actuating through the electronic braking 
system (EBS) or through the electronic power assisted 
steering system (EPAS). For this purpose, the 
application of vision sensors in autonomous lane 

following is usually preferred to laser sensors and radar, 
as vision sensors are of non-intrusive nature and they do 
not require additional infrastructure. Stereo systems [1] 
are capable of achieving higher accuracy in 3D lane 
geometry reconstruction than mono systems relying on 
simplifying assumptions do. However, the fulfillment of 
this potential heavily depends on the quality of camera 
calibration. 

Stereo systems reconstruct road geometry by first 
detecting feature points of the current lane within a 
predicted region of interest in the two images separately 
[1]. Then data from the two sources is fused by 
searching for point correspondences using correlation 
techniques (stereo matching) [2]. The pair of a selected 
feature point in one of the images lies on a specific line 
(epipolar line) in the other image [2,3]. This constraint 
extremely simplifies the search and is resulted from the 
rigid stereo geometry of the cameras that are fixed to the 
vehicle chassis. The matching points are reprojected in 
space with triangulation [3] and a lane model is fitted to 
the resulted point cloud [1]. If camera parameters are 
inaccurate, the computed epipolar line is shifted and 
stereo matching might fail [4], on the one hand, and the 
triangulation might result intolerable inaccuracies in the 
reprojected point coordinates, on the other hand. 
Therefore, a precise preliminary far-range camera 
calibration is indispensable for these systems. 

 

Fig. 1. Stereo matching: the correspondent of the highlighted points in 
the left image is searched along epipolar lines in the right image. 

The most common approach for camera calibration is 
to make snapshots of a checkerboard pattern in different 
orientations and then to estimate the camera parameters 
by minimizing geometric error in the image [5,6]. This 
relies on the assumption that the marker arrangement 
(checkerboard pattern) is printed accurately and is 



planar [5]. In far-range calibration this is not the case 
since a precise marker arrangement is expensive to set 
up. For such cases, we propose a method for measuring 
the marker locations in space with laser distance meters. 
Then we propose a two-step calibration method: first the 
intrinsic parameters (relative focal lengths, principal 
point, distortion coefficients, skew) and then the 
extrinsic parameters (camera location and orientation in 
the world reference frame) are calibrated. A 
modification of a commonly used optimization method 
for the extrinsic parameter estimation is proposed that 
takes into consideration inaccuracies in 3D marker 
locations, as well. A convenient confidence computation 
of the estimated camera parameters is also presented. 
Finally, we evaluate the new method with simulations 
and show some experimental results. 

II. OVERVIEW OF THE CALIBRATION PROCESS 

Intrinsic parameters are determined independently 
for the two cameras with the checkerboard-method 
proposed by Z. Zhang [5] because of its simplicity and 
high accuracy considering the internal parameters. The 
checkerboard covers the full field-of-view of the camera 
and can provide lens-distortion information in all the 
regions of the image. The extrinsic parameters (camera 
location and orientation) are then calibrated for far-
range with a different method. 

The proposed calibration process consists of the 
following steps: 

(1) Calibrating the intrinsic camera parameters of the 
two cameras independently with the checkerboard-
method. For later use, let us denote the vector of 
intrinsic camera parameters by pint. 

(2) Driving the vehicle that holds the two cameras to an 
open flat area of about 15 meters wide and 40 meters 
long. 

(3) Placing marker plates of 50x50 cm with an X-like 
figure in a predefined arrangement in front of the 
vehicle within the common field of view of the two 
cameras up to 30-35 meters (Fig. 2. shows the 
perspective view of such an arrangement). The precise 
placement is not relevant. 

 

Fig. 2. Perspective view of the marker arrangement for extrinsic 
calibration and the two-point distance measurement arrangement. 

(4) Designating two reference points (rL and rR vectors) 
on the left and on the right side of the vehicle on the 

ground. The position of the reference points has to be 
exactly measured in the vehicle’s reference frame that is 
fixed to the vehicle chassis but its origin can be 
designated freely e.g. on the ground. After the 
calibration measurements this reference frame should be 
translated to the vehicle’s center-of-gravity. 

(5) Placing laser distance meters above the designated 
reference points and aiming at each table one-by-one. 
Measuring the distance of the markers from the two 
reference points. 

(6) Taking a close-range photo of the markers with a 
digital camera when the marker is aimed at with the 
distance meter. The laser dot must be visible on the 
marker. Measuring the aiming errors by automatically 
evaluating  the photos. This is required for measurement 
correction. 

(7) From the distances, calculating the 3D coordinates 
of the marker centers xi=(xi,yi,zi)T in the measurement 
reference system (located between the reference points, 
see Fig. 2.) which is in known position in the vehicle 
coordinate system. The result of step 6 is used here. 

(8) Make a snapshot of the calibration scene with the 
two cameras independently and determine the 
xi’=(xi’,yi’)T coordinates of all the marker centers in the 
snapshots. 

(9) Run the optimization proposed in this paper to 
estimate extrinsic camera parameters (for later use, let 
us denote the vector of extrinsic camera parameters by 
pext) and determine the estimation errors for all intrinsic 
and extrinsic parameters. 

III. DETERMINING MARKER COORDINATES IN 
SPACE AND IN THE IMAGES 

The objective of steps 2-7 is to determine the 
coordinates of the marker centers in the measurement 
reference frame (Fig. 2.). The location of the markers 
(depth and lateral position) is measured from two 
reference points with laser distance meters by aiming at 
each of the markers. This presumes a totally flat field: 
the height of the marker centers is assumed to be 
constant. When this is not the case it seems to be 
convenient to perform distance measurements from 
three reference points and then estimate all the three 
coordinates of the marker centers. However, this is not 
suggested because the estimation of the center of marker 
heights becomes ill-posed. Based on geometrical 
considerations, the marker position 
x(pm)=[x(pm),y(pm),z(pm)]T can be estimated from the 
preferred two-point measurement. Corresponding to 
Fig. 2., the parameter vector pm can be written as: 
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dL and dR are the measured distances and 
δL=(δLx,δLy)T, δB=(δRx,δRy)T are the aiming errors at each 
marker. The vector α contains the yaw, pitch and roll 



angles of the marker plate, if the marker plate is not 
parallel to the xy plane due to an imprecise placement. 

This geometrical arragement is described by the 
following two equations: 
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where Q(α) is a 3x2 matrix describing the rotation 
between the VCS and the marker plate. These equations 
are directly applicable in the simulation of the 
measurements. However, the marker center’s position x 
is to be determined in a practical situation. In such a 
case, the equation can be easily solved numerically e.g. 
using fsolve in MATLAB. A good initial guess can be 
found by neglecting Q because Q models only small 
inaccuracies in the marker placement. 

δL and δR can be measured by taking a close-range 
snapshot (with a digital camera) from each marker when 
it is aimed with the laser beams (Fig. 3., left image). 
From these snapshots, with the assumption that the 
exact sizes of the marker plates are known, δL and δR 
errors can be automatically measured with the metrical 
rectification [3] of the markers in the snapshots. This 
requires the detection of the four corners of the plate. 
The precision of δL and δR depends on the resolution of 
the snapshot and is typically in the millimeter range. 
This assumes that the tripod of the laser distance meter 
is stable and the laser dot does not move significantly at 
the moment of the measurement. 

 

Fig. 3. Automated aiming error detection on the snapshots created with a 
digital camera: original image and metrically rectified image  (o: center of 

gravity, ∆: detected location of the laser dot). 

The precision of the marker position estimation can 
be computed by linearizing equations (2), by expressing 
the infinitesimal error vector ∆x in function of all the 
other parameters and by evaluating the analytically 
available Jacobian Jm of x(pm) at the measured 
parameter vector pest. The distribution of each 
measurement is modeled as Gaussian. In practice, the 
worst-case deviation of each parameter can be 
estimated, and e.g. the 99% confidence level may be set 
based on these estimations. This is required for the 
mathematical tractability of the estimation problem and 
must not fall too far from the reality. Then the diagonal 
covariance matrix Σm of the independent measured 
parameters can be built up and the covariance of the 
marker location estimation can be computed by 

forward-propagating the uncertainties through the 
linearized model: 

 T
mmm JJ Σ=Σ  , (3) 

Σ or the derived worst-case (or 99%) estimation error 
∆xi characterizes the inaccuracy of the location 
estimation xi for the i-th marker and this experimental 
information can be used in the optimization step. 

The next step (step 8) is to detect the X-shaped 
markers (Fig. 2.) in the image acquired by the two 
cameras as well and to compute the center of gravity of 
each marker in both images. Center of gravity 
computation relies on many pixels forming the image of 
the markers and therefore this is a regression-like 
problem. On the one hand, this results sub-pixel 
precision in a robust manner, on the other hand this 
implies that the supposition of a 2D isotropic Gaussian 
noise present in the marker center coordinates is again 
not very far from the reality (due to the symmetries in 
the marker shape and due to the central limit theorem). 

The markers are detected in the images automatically 
by using an FFT-based fast normalized cross correlation 
method with an X-template. After that the black X’s are 
located, the center of gravity of the thresholded and 
inverted subimage is computed. The thresholding serves 
for robustness (for the case when the pattern is shaded). 

The error of the X-detector can be estimated by 
applying it to synthetic images. A tiled pattern is 
generated with randomly rotated and appropriately 
resized X-templates. These templates are rasterized at 
precisely known positions. The small random rotations 
model the effect of the marker placement uncertainties. 
A Gaussian filter is applied on the tiled pattern and 
additive noise is superimposed, as well. Since the exact 
location of the markers is known, a detection error 
analysis can be easily performed. 

Let us denote with xi’=(xi’,yi’)T and Σi’ the center 
coordinates of the i-th marker detected in the image and 
the estimated covariance related to it, respectively. 

IV. ESTIMATION OF THE CAMERA PARAMETERS 

Step 1 and step 9 (in section II.) together form a two-
step calibration algorithm. A general camera model used 
in the optimizations can be formulated as: 

 )x,p(x ϕ=′ , (4) 

where the nonlinear mapping φ parameterized with the 
parameter vector p=(pint

T, pext
T)T of all the intrinsic and 

extrinsic parameters maps any 3D-point x into a 2D-
point x’. x is given in metrical coordinates and x’ is 
given in pixel coordinates. In the most common cases 
the camera model for a single camera is the pinhole 
model extended with a distortion model (typically radial 
and tangential distortion model) [2,3,6]. The camera 
model we use is that used in [2] extended with a 4th 
order radial distortion model [5]: 
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Here in (5) R is the 3x3 camera rotation matrix with 3 
degrees of freedom, t is the camera translation vector. 
(7) is the radial distortion model: cx, cy are the (metrical) 
coordinates of the radial distortion center, d1, d2 are the 
radial distortion coefficients. Such a distortion model is 
satisfying in most of the cases. Radial distortion is 
modeled before rasterization (8) because the distortion 
is elliptical in pixel coordinates. fx, fy are the relative 
focal lengths in pixel coordinates, s is the axis skewness 
parameter, u0 and v0 are the principal point coordinates. 
The vector of the intrinsic and extrinsic parameters can 
be written as: 
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where r is the rotation vector related to R by the 
Rodrigues-formula. Thus, we have 9 intrinsic and 6 
extrinsic camera parameters, as a first approach. 

Step 1 results an estimate for the vector of intrinsic 
parameters pint from the known metrical coordinates of 
the square–corners in the checkerboard pattern and from 
the measured pixel-coordinates of the same corners in 
the snapshots taken of the pattern in different 
orientations. It should be noted that each additional 
checkerboard snapshot requires a new pext,i vector that 
describes the relative orientation and location of the 
camera and the checkerboard. 

The parameters are determined by iteratively 
minimizing the sum of the geometric errors ||εij||2 for all 
the square points j=1,2...n in all the images i=1,2...m 
[5,6]. The optimal estimate popt, is proved to be 
maximum likelihood (ML) [3,5]. The checkerboard 
method is well applicable in far-range calibration as 
well, but only for the estimation of the intrinsic 
parameters. The many external parameters 
(checkerboard positions and orientations) resulted are 
not relevant for us here.  

After finding the optimal estimate, the residual errors 
can be computed for each feature point. This is very 
close to a uniform, isotropic Gaussian distribution 
which implies that the precision of the intrinsic 
parameter estimation is well represented by a single 
deviation parameter computed from the residual errors.  

The uncertainty is then backward propagated to camera 
parameters (very similarly to (3)). This requires the 
knowledge of the Jacobian of the camera model φ 
evaluated at popt. Therefore, the outputs of step 1 are the 
intrinsic parameters (pint) and the covariance matrix Σint 
related to them.  

Step 9 results an estimate for the vector of extrinsic 
parameters pext from the known 3D metric coordinates 
(xi) of the X-shaped markers and from the measured 2D 
pixel-coordinates (xi’) of the marker centers extracted 
from the two images taken of the calibration scene with 
the stereo vision system. The extrinsic camera 
parameters are determined independently for the two 
cameras and then the extrinsic parameters of the stereo 
rig can be computed at any time from the result of the 
independent calibrations [2]. This method is used 
because not only the relative location and orientation of 
the cameras is relevant but the absolute position and 
orientation of the stereo rig in the vehicle’s reference 
system, as well [4].  

Here, a usual choice is to minimize the geometric 
error in the image only: 

 ∑
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where n is number of feature points (X-markers) used in 
the calibration. This means that the inaccuracies in the 
(3D) metrical marker coordinates are all translated into 
a geometric error in the image and also that it might be 
irrelevant to suppose an isotropic Gaussian distribution 
that is uniform in the whole image, especially when 
calibrating for far range and the depth range is wide. 
However, if nothing is known about the noise structure, 
this is the best we can do. 

In [4], an alternative method is presented, however 
they apply nonlinear equation solving and therefore they 
minimize an algebraic error that is not related to 
physical quantities. In the meantime, they do not deal 
with radial distortion models that can cause significant 
error in lane reconstruction. 

We propose a different solution which exploits all 
the experimental information we can have about the 
noise structure, which minimizes geometrical errors and 
which can deal with radial distortion models due to its 
generality. Using the proposed method we minimize 
errors in the 3D metrical space and in the images 
simultaneously and we sum the terms by weighting 
them with the inverse of their confidence level. The 

Therefore we suggest building in the inaccuracy 
information Σi and Σi’ resulted from our preliminary 
experimental considerations into the cost function. If the 
noise distribution is Gaussian, this approach leads to the 
general maximum likelihood solution that can be found 
in [2] as a theoretical possibility but its application is 
rarely found in the camera calibration practice: 
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We need to recall this general ML cost function 

mainly due to the relatively high (and known) 
inaccuracies in the 3D measurements. It can be seen that 
additional terms are present in the general solution right 
next to the widely used terms. The Mahalanobis 
distance on the left side is the norm of the error in the 
image assuming that the output of the camera model 
evaluated at popt gives the distortion-free ML-estimate 
of the X-centers in the image. Here, the earlier-
discussed  Σi’ uncertainty is required. The Mahalanobis 
distance of two vectors is defined as: 
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Therefore, this is a well-known form of a special 
weighted least-squares problem where we weight the 
measurements with the inverse of their uncertainty. This 
is the case with the spatial term, as well. There, we use 
the covariance Σi of the 3D location measurements for 
weighting. The covariance matrices convert the metrical 
quantities and the pixel quantities into a common, 
additive dimension on the one hand and put strength on 
the more certain measurements in affecting the 
parameters to estimate, on the other hand. However, the 
ML-estimate qi of the spatial features (X-marker 
centers) is unknown. 

Two solutions exist for this problem: either we 
consider qi as parameters (similarily to structure 
reconstruction applications in machine vision) or we use 
an approximation of the cost function (11). The first 
yields that the parameter vector increases significantly, 
potentially leading to numerical problems at the 
optimization, the second leads to another (non-ML) cost 
function that embodies the bidirectional transfer error. 
This means that when computing the error in the image, 
we consider the spatial features exact, and when 
calculating the right-side term we consider the detected 
image features exact. Thus, qi will be the closest point 
to the spatial feature xi that projects exactly into the 
image feature xi’. To find qi(pj) at each iteration step j, 
the “inverse” mapping of φ has to be used that maps an 
image point into a spatial line and the closest point to xi 
has to be found on this line. 

Homography estimation can be used to compute an 
initial guess for the parameters from the known xi and 
xi’ feature points because the marker arrangement is 
approximately planar. From the estimated homography, 
the rotation matrix and the translation vector can be 
easily determined. If the arrangement is not planar, then 
the Direct Linear Transformation (DLT) can be used to 
find the initial guess. Naturally, this initializing linear 
step neglects the non-linear radial distortion effect. 

V. SIMULATION RESULTS 

We will show in the simulations that it is the range of 
the spatial errors that makes necessary the usage of the 
novel approach. Using a simple example with the model 
of a real camera we will show that even small 
inaccuracies in the marker arrangement cause 
significant deviations in the image of the markers that 
competes with the usual practical residual errors 
resulted by minimizing only geometrical errors. 
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Fig. 4. Synthetic checkerboard images were used to evaluate the effect 

of feature detection errors on the parameter uncertainties. 
A simulated 720x576 camera has been used for this 

purpose, but the camera has been re-calibrated based on 
9 synthetic checkerboard patterns with a corner feature 
location deviation of 0.30 pixels. This resulted a real-
like situation because the covariance of the camera 
parameters could be determined as well. The camera 
parameters and uncertainties resulted: 
rel.focal lengths: [1159.338 1258.254] ± [2.694 3.085] 
pixels, skew: 1.045 ± 1.468; principal point: 
[361.050 287.236] ± [7.046 6.463] pixels; distortion 
center: [362.668 307.793] ± [4.609 4.363] pixels; 
radial distortion coefficients: [-0.848 0.118] 
± [0.030 0.341]. The estimated standard deviation was 
0.29 pixels. 24 synthetic markers and position 
measurement data has been generated then by 
considering all the uncertainties in the spatial 
measurements such as measurement uncertainty in the 
reference point locations, distance measurements, 
marker placements. A Gaussian noise with [10,10,2]° 
pitch-yaw-roll deviations has been added to the marker 
plates. Uncertainty has been introduced in the aiming 
process and to the aiming error extraction, as well. Even 
with the small inaccuracies taken into consideration 
(from 5 mm in the laser-based distance measurements to 
1-2 cm inaccuracy computed for the reference point 
locations), the uncertainty in the estimated marker 
locations reached 20-26 cm (at a distance of 40 meters 
from the reference points.  

The exact marker centers have been projected into 
the image of the camera using the exact camera model, 
and a detection noise has been added.  This modeled the 
error of the X-detector. The implemented X-detector 
was evaluated on synthetic images with 5x5 X-pattern 
tiles with sizes ranging from 10x10 to 45x45 pixels in 5 
pixel steps.  The tiles were randomly rotated with an 
angle deviation of 3°. This modeled the skew in the 
placement of the markers. The exact locations of the X-
tile centers were known and therefore the accuracy of 
the X-detector could be evaluated by performing a high 



number of trials. This feature detection was repeated 10 
times resulting a total number of detected synthetic X-
markers of 250 for each marker size. Interestingly, we 
found that the X-detector was not sensitive to the size of 
the X-tiles because this feature detection test resulted a 
standard deviation ranging from 0.18 to 0.20 pixels 
independently of the marker sizes. Therefore, we used a 
deviation of 0.19 pixels in the error modeling of our 
robust feature detection. 

 
Fig. 5. Synthetic X-marker tiles were used to evaluate the accuracy of 

the feature-detector. The tiles were randomly rotated with a small 
amount in order to simulate marker placement skewness, as well. 

In order to compare the spatial measurement errors to 
the error of the X-detection given in pixels, the 99% 
covariance ellipsoid of each marker measurement was 
projected in the image of the camera by using the 
Jacobian of the world-to-image mapping. The size of 
these ellipsoids increased in function of the depth of the 
X-markers as shown in fig. 4.  
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Fig. 6. Axis lengths of the 99% covariance ellipsoids of the spatial 

measurements in function of the depth (at each depth there were 2 or 4 
simulated markers). 
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Fig. 7. The 99% covariance ellipsoid of each spatial marker 

measurement projected in the image of the camera for comparison with 
the noise of the X-detector. 
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Fig. 8. Axis lengths of the 99% projected covariance ellipsoids of the 

spatial measurements in function of the depth. 

The figures above show that the level of the 
measurement inaccuracies in the marker location 
estimation is much higher than the error of a feature 
detector of sub-pixel accuracy. In the meantime, the 
error of the marker locations, themselves vary in a 
relatively wide range. Therefore, it is well suggested to 
use the weighting matrices discussed earlier in the cost 

function to make difference between accurately 
estimated marker coordinates, inaccurate marker 
location estimations and the relatively accurate feature 
detection in the image. This shows that it is relevant to 
introduce co-minimization in 3D space and in the image 
in far-range calibration. 

It is also noticeable that even if the locations of the 
farther markers are less accurately determined, these 
errors do not affect the image as much as the nearer 
markers do. This is clearly due to the perspective effect. 

VI. CONCLUSIONS 

A far-range camera calibration method has been 
presented that is applicable for stereo lane detection 
systems. A method of far-range marker localization has 
been proposed with two point-measurements by using 
high-precision laser-based distance meters. For 
determining the extrinsic camera parameters we 
proposed a novel optimization method. We minimize 
geometric errors in the 3D metrical space and in the 
images simultaneously. This optimization method 
considers the most information we can have about the 
noise structure of the measurements. The suggested 
extrinsic camera calibration method has been paired 
with the popular one for  intrinsic parameter calibration. 

The proposed co-minimization method is expected to 
be more accurate than those that simply minimize 
geometric error in the image plane when 3D marker 
coordinates are known with considerable inaccuracy. 

The method can be easily adapted to other far-range 
applications of either stereo or mono vision sensor 
configurations that require high accuracy. 
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